Cracks and corrosion in elevator torque tubes on Cessna

SAIB CE-17-25 issued by FAA on  cracks and corrosion in elevator torque tubes on Cessna 172, 175, 180, 182, 185, 188, and 208 airplanes.

An elevator torque tube removed from a Cessna Model 172C airplane during an annual inspection for cracks, corrosion and improper repairs. The airplane had spent 24 years in Florida (a high corrosion area). During the annual inspection, a blind rivet installation (not approved) was found. The date of this blind rivet installation could not be determined.

The Cessna 100 Series Service Manual, 1962 and Prior, in Section 2, Airframe Inspection item 34 states “Elevators for security of attachment, smooth operation, security of balance weights, cracks, corrosion, and skin or structural damage.

These elevator torque tubes have been installed on Cessna 100 airplanes since the 1950s and continue to be installed on production Cessna 172 and 182 airplanes. The tubes are made of aluminum. They are exposed to wheel spray during landings or spray from floats during water landings. The tube is oriented horizontally so it tends to retain water. Exposure to moisture over many years leads to corrosion damage. Airplanes used in coastal areas are especially prone to corrosion.

The SIDs state: “Visually inspect the torque tube for corrosion and rivet security. Pay particular attention to the flange riveted onto the torque tube near the airplane centerline for corrosion.

(1) Clean area before inspecting if grime or debris is present.”

For the 180/185 and 100 airplanes built between 1953 and 1968: Initial inspection compliance is recommended at 5,000 hours or 20 years. Repeat inspection intervals are recommended at 2,000 hours or 5 years.

 For the 172, 182, and 188 airplanes built after 1968: Initial inspection compliance is recommended at 10,000 hours or 20 years. Repeat inspection intervals are recommended at 3,000 hours or 5 years.

            Recommendations – For Cessna 100 airplanes and Cessna 208/208B airplanes, FAA recommend adherence to the applicable SIDs and maintenance manuals for corrosion inspections. Airplanes based or operated in high corrosion areas are recommended to be inspected more frequently. Pilots should check this area for corrosion or obvious damage during preflight inspections. If minor surface corrosion is found, remove the corrosion in accordance with Textron Aviation procedures. If cracks or severe corrosion is found, replace the affected parts.

FAA AD 2017-16-11 on Lycoming Engines

This AD 2017-16-11  requires an inspection of connecting rods and replacement of affected connecting rod small end bushings.  AD was prompted by several reports of connecting rod failures resulting in uncontained engine failure and in-flight shutdowns (IFSDs).  AD applies to:           (1) All Lycoming Engines reciprocating engines listed in Table 1 of Lycoming Engines MSB No. 632B, dated August 4, 2017, and

(2) all Lycoming Engines reciprocating engines that were overhauled or repaired using any replacement part listed in Table 2 of Lycoming MSB No. 632B, which was shipped from Lycoming Engines during the dates listed in Table 2 of Lycoming  MSB No. 632B.

Reason of this AD is reports of uncontained engine failures and IFSDs due to failed connecting rods on various models of Lycoming Engines reciprocating engines listed in Table 1 of Lycoming MSB No. 632B, that were overhauled or repaired using any replacement part listed in Table 2 of Lycoming Engines MSB No. 632B, which was shipped from Lycoming Engines during the dates listed in Table 2 of Lycoming Engines MSB No. 632B.

This AD requires accomplishing the instructions in MSB  describing procedures for inspecting connecting rods and replacing connecting rod small end bushings to prevent connecting rod failure.  If not complied, could result in uncontained engine failure, total engine power loss, IFSD, and possible loss of the airplane.

Lycoming has determined that a small percentage of the bushings manufactured by a sub-supplier during a specific time period were diametrically undersized, resulting in a tightness of fit below factory accepted tolerances.These non-conforming bushings may have a substantially lower push-in/pull-out force than conforming bushings and may be susceptible to unseating during normal engine operations.

 Required Actions

(1) For all affected engines, within 10 operating hours after the effective date of this AD, inspect all affected connecting rods as specified in MSB.

(2) Replace all connecting rods that fail the inspection required by  this AD with parts eligible for installation.

Import/Acquisition of Aircraft

It is mandatory to have #GAGAN enabled to all #aircraft being registered in India from 1st January 2019 trough a circular ( Air Transport Circular No. 2.2017 dated 23.08.2017 – subject: procedure for obtaining permission  for import/acquisition of aircraft – which replaced ATC No.1/2016 on the same subject.

DGCA will issues permission to individuals/Company etc. for import of #microlight aircraft, powered hang #gliders and hot air #balloon for private use, hobby flying, joy rides etc.
The permission for import of aircraft, except in case of aircraft for private use, shall be issued in two stages, namely “In-principle approval” and “NOC for Import”. Directorate of Air Transport (DAT) shall issue in-principle approval for all categories of aircraft in consultation with other relevant Directorates.
In case of import of aircraft for private use, Import Licence from DGFT shall be required. After grant of In-principle approval, a letter recommending issuance of Import Licence by DGFT shall be issued by DGCA. All aircraft other than private category aircraft shall be imported without the need to obtain an Import License from DGFT.

GAGAN is the acronym for GPS Aided GEO Augmented Navigation. This is a Satellite Based Augmentation System (SBAS) implemented jointly with Airport Authority of India (AAI). The main objectives of GAGAN are to provide Satellite-based Navigation services with accuracy and integrity required for civil aviation applications and to provide better Air Traffic Management over Indian Airspace. The system will be interoperable with other international SBAS systems and provide seamless navigation across regional boundaries. The GAGAN Signal-In-Space (SIS) is available through GSAT-8 and GSAT-10.

Issuance of Category A Licence

Another step for compliance of CAR 66, DGCA has now decided to issue Category A licence to eligible person. As per revised Rule 61 of Aircraft Rules 1937, the Category A licence has been made non-type rated. A large number of technical person holding BAMEL/BAMEEC in heavy Aeroplane (HA)  and Jet Engine (JE) are employed in various organization may be considered for issuance of Category A licence. To get Category A licence competent authority has decided some modality to be complied with.

The existing CAR 147 type training organisation will be permitted to conduct Difference Training (difference in syllabus of CAR 66 Cat A licence and syllabus of exiting basic licence/Certificate.Syllabus of difference training will be approve by DGCA HQrs. The schedule of  examination is decided by CEO and likely to be held in October 2017. The application for conduct examination after successful completion of course will be forwarded to RAO by respective organisation along with requisite fees.

SMS Framework

         Component 1.0 Safety Policy and Objectives
Element 1.1 Safety Policy
Element 1.2 Management Commitment and Safety Accountabilities
Element 1.3 Key Safety Personnel
Element 1.4 Emergency Preparedness and Response
Element 1.5 SMS Documentation and Records
         Component 2.0 Safety Risk Management (SRM)
Element 2.1 Hazard Identification and Analysis
Process 2.1.1 System Description and Task Analysis
Process 2.1.2 Identify Hazards
Element 2.2 Risk Assessment and Control
Process 2.2.1 Analyze Safety Risk
Process 2.2.2 Assess Safety Risk
Process 2.2.3 Control/Mitigate Safety Risk
          Component 3.0 Safety Assurance
Element 3.1 Safety Performance Monitoring and Measurement
Process 3.1.1 Continuous Monitoring
Process 3.1.2 Internal Audits by Operational Departments
Process 3.1.3 Internal Evaluation
Process 3.1.4 External Auditing of the SMS
Process 3.1.5 Investigation
Process 3.1.6 Employee Reporting and Feedback System
Process 3.1.7 Analysis of Data
Process 3.1.8 System Assessment
Element 3.2 Management of Change
Element 3.3 Continuousw Improvement
Process 3.3.1 Preventive/Corrective Action
Process 3.3.2 Management Review
          Component 4.0 Safety Promotion
Element 4.1 Competencies and Training
Process 4.1.1 Personnel Expectations (Competence)
Process 4.1.2 Training.
Element 4.2 Communication and Awareness

Training on CAR-66 & CAR-147 by DGCA

Three days training program   planned by DGCA Hqrs.  on CAR-66 & CAR-147 for benefit of Indian aviation   Industry was held on IAA, NIAMAR, New Delhi from 26 July 2017 to 28 July 2017.  Person nominated  from all the scheduled airlines and MRO’s. participated in training. These  participants are   responsible  and able to train this subject in their organisation after this training. Training is conducted by Senior DGCA officers. 

Mr. K P Srivastava Dy Director General has nicely explained CAR-66 for two day Mr. D K Das  Dy DAW  on CAR-147.  All training is conducted  by Mr. B C Behra  DAW and under guidance of Mr. S Dutta Dy DG.


After a long gap, I return back again. I will meet you regularly through my blog on subject required to discus related to aviation. Aviation scenario is changing very fast now a days. four force of maintenance are CAR 145 , CAM , CAR 66 and CAR 147. and all are required to be discuss thoroughly.